FDA approves ventilator designed by particle physics community

Tuesday, May 5, 2020

by Lauren Biron, Fermi National Accelerator Laboratory, and Liz Fuller-Wright, Princeton University Office of Communications

In just six weeks, from March 19 to May 1, an international team of physicists and engineers led by Princeton’s Cristian Galbiati brought a ventilator from concept to FDA approval.

The U.S. Food and Drug Administration announced on Sunday, May 3, that the Mechanical Ventilator Milano (MVM) is safe for use in the United States under the FDA’s Emergency Use Authorization, which helps support public health during a crisis.

This ventilator is the brainchild of Galbiati, a professor of physics at Princeton University who normally leads a dark matter experiment called DarkSide-20k. When under lockdown in Milan, a city hit hard by COVID-19, Galbiati heard of ventilator shortages and wanted to help.

“The sense of crisis was palpable,” said Galbiati. “It was clear that many patients would need respiratory assistance.”

He reached out to fellow DarkSide-20k researchers to develop a ventilator with minimal components that could be quickly produced using commonly available parts. Dark matter researchers have extensive experience designing and using sophisticated gas handling systems and complex control systems, the same capabilities required in mechanical ventilators.

“Princeton provided strong support for over 15 years for the DarkSide project, which aims to discover dark matter with an argon-based detector,” said Galbiati. “To that end, we had to tackle unique challenges, such as developing special techniques to extract isotopically depleted argon from mantle gas wells, and developing cryogenic distillation columns of several hundreds of meters of height to further purify the argon. All of this would not have been possible without Princeton’s support. Our scientific collaboration has grown to encompass nearly 400 scientists from 100 institutions, including many talented researchers with strong expertise and know-how in the field of technical gases. When the moment came, we were ready to pivot our attention to the problem of developing mechanical ventilators and to put to use in that context the collective talents of the collaboration.”

Read full story on the University's homepage